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Abstract

The problem of fairly allocating a set of indivisible items is
a well-known challenge in the field of (computational) so-
cial choice. In this scenario, there is a fundamental incom-
patibility between notions of fairness (such as envy-freeness
and proportionality) and economic efficiency (such as Pareto-
optimality). However, in the real world, items are not always
allocated once and for all, but often repeatedly. For example,
the items may be recurring chores to distribute in a house-
hold. Motivated by this, we initiate the study of the repeated
fair division of indivisible goods and chores, and propose a
formal model for this scenario. In this paper, we show that,
if the number of repetitions is a multiple of the number of
agents, there always exists a sequence of allocations that is
proportional and Pareto-optimal. On the other hand, irrespec-
tive of the number of repetitions, an envy-free and Pareto-
optimal sequence of allocations may not exist. For the case
of two agents, we show that if the number of repetitions is
even, it is always possible to find a sequence of allocations
that is overall envy-free and Pareto-optimal. We then prove
even stronger fairness guarantees, showing that every allo-
cation in such a sequence satisfies some relaxation of envy-
freeness. Finally, in case that the number of repetitions can
be chosen freely, we show that envy-free and Pareto-optimal
allocations are achievable for any number of agents.

1 Introduction
In a variety of real-life scenarios, a group of agents has to
divide a set of items among themselves. These items can be
desirable (goods) or undesirable (chores) and agents have
(heterogeneous) preferences concerning them. In the case of
goods, we can think, for instance, of employees having to
share access to some common infrastructure, like computing
facilities. In the case of chores, we can think of roommates
having to split household duties or teams having to split ad-
min tasks. We may even have a set of mixed items, where
the agents may consider some items good and others bad:
for instance, when assigning teaching responsibilities, some
courses may be desirable to teach for some while undesir-
able (negative) for others.

The examples above are all instances of problems of fair
allocation of indivisible items (see the recent survey by
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Amanatidis et al. (2022)). One of the challenges of fair di-
vision problems is that often, given the agents’ preferences,
it is impossible to find an allocation of the items which is
both fair (e.g., no agent envies another agent’s bundle) and
efficient (e.g., no other allocation would make some agents
better off, without making anyone worse off). However, a
crucial feature which has so far received little attention, is
that many fair allocation problems occur repeatedly, in the
sense that the same items will need to be assigned multiple
times to the agents. For instance, university courses are usu-
ally offered every year, computing facilities may be needed
daily or weekly by the same teams of employees, and house-
hold chores need to be done regularly.

In this paper, we thus focus precisely on those settings
where a set of items has to be repeatedly allocated to a set
of agents. This opens the field to new and exciting research
directions, revolving around the following central question:

Can some fairness and efficiency notions be guaran-
teed when taking a global perspective on the over-
all sequence of repeated allocations? Can we addi-
tionally achieve fairness and efficiency guarantees at
each individual repetition?

Contribution and outline. Our main contribution is the
definition of a new (offline) model for the repeated fair allo-
cation of goods and chores, which we present in Section 2.
In particular, we specify how sequences of allocations will
be evaluated with respect to classical axioms of fairness
and efficiency: we distinguish between sequences satisfying
some axioms per-round (i.e., for every allocation composing
them), or overall (i.e., when considering the collection of all
the bundles every agent has received in the sequence). We
consider two general cases: one where the number of repeti-
tions is predetermined and given as part of the input and one
where the number of repetitions can be chosen freely based
on the instance. In the sequel, we refer to these as the fixed
and variable cases, respectively.

In Section 3, we study our model for a fixed number of
rounds (k) with n agents. We show that: if the number of
rounds is a multiple of n, we can always guarantee the ex-
istence of a sequence of allocations that is envy-free over-
all in (Proposition 4), and a sequence of allocations that is
proportional and Pareto-optimal (Theorem 7). This is essen-
tially optimal in two respects. First, for any number n > 2 of
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agents and any fixed number k of rounds which is not a mul-
tiple of n, a sequence of allocations that is proportional over-
all may not exist (Proposition 5). Moreover, for any number
n > 2 of agents and any fixed number k of rounds, there
is an instance of chore allocation where an envy-free and
Pareto-optimal sequence of allocations may not exist (The-
orem 6).

In Section 4, we will stay in the fixed-k setting but focus
our model on the case of two agents. This scenario is funda-
mental in fair division, with numerous applications, includ-
ing inheritance division, house-chore division, and divorce
settlements (Brams and Fishburn 2000; Brams, Kilgour, and
Klamler 2014; Kilgour and Vetschera 2018; Igarashi and
Yokoyama 2023). Here, we show that if the number of
rounds is even, we can always find a sequence of alloca-
tions which is envy-free and Pareto-optimal overall, as well
as per-round weak envy-free up to one item (Corollary 14).
Moreover, for two rounds, we can strengthen the per-round
fairness guarantee to envy-freeness up to one item (EF1)
(Corollary 12). At the cost of sacrificing the efficiency re-
quirement, we also show that we can always find a sequence
of allocations which is envy-free and per-round EF1 in poly-
nomial time (Theorem 15). These results turn out to be the
best we can hope for. In Proposition 10, we show that there
is an instance with two agents and k > 2 rounds where
no sequence of allocations is envy-free and Pareto-optimal
overall, as well as per-round EF1.

In Section 5, we investigate the model with a vari-
able number of rounds. Within this model, we can in fact
achieve overall and per-round fairness guarantees for the
case of n agents. Specifically, we establish the existence
of a sequence of allocations that satisfies envy-freeness
and Pareto-optimality overall, while also meeting the per-
round PROP[1,1] criterion (a weakening of proportional-
ity). For scenarios involving goods only or chores only, we
can achieve even per-round PROP1. To show this, we estab-
lish the connection between our model and the divisible and
probabilistic fair division problems. An overview of our re-
sults can be found in Table 1. All the omitted proofs are pre-
sented in the full version of our paper (Igarashi et al. 2023).

Related work. Aziz et al. (2022) analyze fairness con-
cepts for the allocation of indivisible goods and chores.
Based on some of these results, Igarashi and Yokoyama
(2023) have also developed an app to help couples divide
household chores fairly. Another relevant application is that
of the fair allocation of papers to reviewers in peer-reviewed
conferences (Meir et al. 2021; Payan and Zick 2022), as well
as the allocation of students to courses under capacity con-
straints (Othman, Sandholm, and Budish 2010). These arti-
cles focus however on “one-shot” (non-repeated) problems.

Repetitions have been studied in the context of match-
ings (Hosseini, Larson, and Cohen 2015; Gollapudi, Kollias,
and Plaut 2020; Caragiannis and Narang 2022). This line of
work uses models similar to ours. However, results do not
carry over due to differences between matchings and arbi-
trary multi-unit assignments (as we consider). Repeated fair
allocation is also related to probabilistic fair division (Bud-
ish et al. 2013; Aziz et al. 2023). We make this connection

precise in Section 5.
Various settings fall under the umbrella of dynamic or

online fair decision-making (Aleksandrov and Walsh 2020;
Kohler et al. 2014; Kash, Procaccia, and Shah 2014; Free-
man et al. 2018; Benade et al. 2018; Zeng and Psomas 2020).
Guo, Conitzer, and Reeves (2009) and Cavallo (2008) fo-
cus on a repeated setting, where a single item must be allo-
cated in every round. We work in an offline setting, where
agents have static and heterogeneous preferences over mul-
tiple items instead of demands, and the sets of agents and
items is fixed. Balan, Richards, and Luke (2011) also study
repeated allocations of items, but they focus on the average
of utilities received by the agents for an allocation sequence.

In the context of elections, a closely related framework
is that of perpetual voting, introduced by Lackner (2020),
where the agents participate in repeated elections to select
a winning candidate and classical fairness axioms (as well
as new ones) are introduced to evaluate aggregation rules
with respect to sequences of elections. A similar approach
has also been taken to analyze repeated instances of partici-
patory budgeting problems (Lackner, Maly, and Rey 2021).
Freeman, Zahedi, and Conitzer (2017) consider a setting
where at each round one alternative is selected, and agents’
preferences may vary over time. A related model of simulta-
neous decisions, closer to fair division, has been studied by
Conitzer, Freeman, and Shah (2017).

2 The Model
In this section, we present the model used throughout the
paper. Furthermore, we recall some familiar concepts from
the theory of fair division, and adapt them to our scenario.

We denote by N a finite set of n agents, who have to
be assigned a set of m items in the finite set I . An al-
location π ⊆ N × I consists of agent-item pairs (i, o),
indicating that agent i is assigned item o. We denote by
πi = {o ∈ I : (i, o) ∈ π} the set of items that an agent i re-
ceives in allocation π. We assume that the allocation must be
exhaustive: all items must be assigned to some agent (and no
two agents may receive the same item). Thus,

⋃
i∈N πi = I

and, for all distinct i, j ∈ N , πi ∩ πj = ∅. We write [k]
to denote {1, . . . , k}. Finally, given a positive integer `, we
denote by `N the set of positive integers multiples of `.

Utilities. Each agent i ∈ N is associated with a (dis)utility
function ui : I → R, which indicates how much they like
or dislike each item. Namely, we consider a setting where
each agent may view each item as a good, a chore, or a null
item. In particular, we say that an item o ∈ I is an objective
good (resp. chore or null) if, for all i ∈ N , ui(o) > 0 (resp.
ui(o) < 0 or ui(o) = 0). Otherwise, we say that o is a
subjective item.

We focus on additive utility functions and with a slight
abuse of notation we write ui(S) =

∑
o∈S ui(o) for the

utility that agent i gets from set S ⊆ I . Thus, the utility
of agent i for an allocation π is given by ui(πi). We denote
by u = (u1, . . . , un) the profile of utilities for the agents.

Fairness. We introduce several fairness concepts, as de-
fined by Aziz et al. (2022) and by Amanatidis et al. (2022).
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condition result
#agents (n) #rounds (k) fairness guarantee reference
n > 2 k ∈ nN EF overall Prop. 4
n > 2 k /∈ nN PROP overall Prop. 5
n > 2 k ∈ N EF+PO overall Thm. 6

? n > 2 k ∈ nN PROP+PO overall Thm. 7
? n > 2 variable k EF+PO overall and per-round PROP[1,1] (PROP1 for only goods/chores) Thm. 16

n = 2 k > 2 EF+PO overall and per-round EF1 Prop. 10
? n = 2 k = 2 EF+PO overall and per-round EF1 Cor. 12
? n = 2 even EF+PO overall and per-round weak EF1 Cor. 14

n = 2 even EF overall and per-round EF1 Thm. 15

Table 1: Overview of our results regarding envy-freeness (EF), envy-freeness up to one item (EF1), weak EF1, proportionality
(PROP), and Pareto-optimality (PO). Crossed-out results cannot be guaranteed under the stated conditions. We write k ∈ nN
to denote that the number of rounds is a (fixed) multiple of n. The main positive results are highlighted with ?.

A classical notion of fairness is that of envy-freeness: an
allocation is envy-free if no agent finds that the bundle given
to someone else is better than the one they received.

Definition 1 (EF). For agents N , items I , and profile
u, allocation π is envy-free (EF) if for any i, j ∈ N ,
ui(πi) > ui(πj).

It is easy to see that this notion is too strong and cannot
always be achieved (consider the case of one objective good
and two agents desiring it). Thus, it has then been relaxed to
envy-freeness up to one item, which has been further gener-
alized to take into account both goods and chores.

Definition 2 (EF1). For agents N , items I , and profile u,
an allocation π is envy-free up to one item (EF1) if for any
i, j ∈ N , either π is envy-free, or there is o ∈ πi ∪ πj such
that ui(πi \ {o}) > ui(πj \ {o}).

Yet another concept is that of proportionality of an allo-
cation, where each agent receives their due share of utility.

Definition 3 (PROP). For agents N , items I , and profile
u, an allocation π satisfies proportionality if for each agent
i ∈ N we have ui(πi) > ui(I)/n.

Note that envy-freeness implies proportionality when
assuming additive utilities—see, e.g., Aziz et al. (2022,
Prop. 1).

Finally, in a similar spirit to EF1, we can weaken pro-
portionality to the notion of proportionality up to one item
(PROP1) as well as its relaxed version (PROP[1,1]), to guar-
antee that agents receive a share of utility close to their pro-
portional fair share. The notion of PROP1 has been proposed
by Conitzer, Freeman, and Shah (2017) and later extended to
the mixed setting by Aziz et al. (2022).

Definition 4. An allocation π is said to satisfy

• PROP1 if for each i ∈ N , ui((πi \X)∪Y ) > ui(I)/n for
some X ⊆ πi and Y ⊆ I \ πi with |X ∪ Y | 6 1.
• PROP[1,1] if for each i ∈ N , ui((πi \X)∪Y ) > ui(I)/n

for some X ⊆ πi and Y ⊆ I \ πi with |X|, |Y | 6 1.

We note that PROP1 and PROP[1,1] coincide with each
other when all items have non-negative values, since remov-
ing an item from an envious agent’s bundle does not increase

his or her utility. The same relation holds when all items
have non-positive values. Note that Shoshan, Hazon, and
Segal-Halevi (2023) recently introduced EF[1,1], which is
an analogous version of our PROP[1,1] for envy-freeness.

Efficiency. Alongside fairness, it is often desirable to dis-
tribute the items as efficiently as possible. One way to cap-
ture efficiency is via the notion of Pareto-optimality, mean-
ing that no improvement to the current allocation can be
made without hurting some agent.

Definition 5 (PO). For agents N , items I , and profile u,
an allocation π is Pareto-optimal (PO) if there is no other
allocation ρ such that for all i ∈ N , ui(ρi) > ui(πi) and
for some j ∈ N it holds that uj(ρj) > uj(πj). If such a ρ
exists, we say that it Pareto-dominates π.

Repeated setting. In our paper, we will be interested in re-
peated allocations of the items to the agents, i.e., sequences
of allocations. We denote by π̄(k) = (π1, π2, . . . , πk) the
repeated allocation of the m items in I to the n agents in
N over k time periods (or rounds). More formally, we will
consider k copies of the set I , such that I1 = {o11, . . . , o1m},
. . . , Ik = {ok1 , . . . , okm}. Then, each π` corresponds to an al-
location of the items in I` to the agents in N . For all agents
i ∈ N , all items o ∈ I and all ` ∈ [k], we let the utility be
unchanged: i.e., ui(o) = ui(o

`). When clear from context,
we will drop the superscript ` from the items.

As a first approach, we will assess fairness over time by
considering the global set of items that each agent has re-
ceived across the k rounds. We denote by π∪k the alloca-
tion of k · m (copies of the) items to the n agents, where
π∪ki = π1

i ∪ · · · ∪ πk
i for each i ∈ N . Namely, we con-

sider the allocation π∪k where each agent gets the bundle of
(the copies of) items that they have received across all the k
time periods in π̄(k). We say that a sequence of allocations
π̄(k) for some k satisfies an axiom overall, if π∪k satisfies it
(when clear from context, we omit the term “overall”). Sim-
ilarly, we say that π̄(k) Pareto-dominates ρ̄(k) overall if π∪k

Pareto-dominates ρ∪k, and that π̄(k) is Pareto-optimal over-
all if no ρ̄(k) dominates it.

Since envy-freeness implies proportionality, we get:
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Proposition 1. For additive utilities, if π̄(k) is envy-free
overall, then it is proportional overall.

As a second approach, we will assess fairness over time
by checking whether each repetition satisfies some desirable
property. For an axiom A, we say that a sequence of allo-
cations π̄(k) (for some k) satisfies per-round A, if for every
j ∈ [k], the allocation πj satisfies the axiom. For example,
an allocation π̄(k) = (π1, . . . , πk) is per-round EF1 if every
allocation πj for all j ∈ [k] is EF1.

Proposition 2. If π̄(k) is Pareto-optimal overall, then it is
per-round Pareto-optimal.

The converse direction does not hold, namely, per-round
Pareto-optimality may not imply overall Pareto-optimality,
as the following example shows.
Example 1. Consider a utility profile over two agents and
two items where u1(o1) = 4, u1(o2) = 5, u2(o1) = 3 and
u2(o2) = 9. Now consider a four-round allocation where
agent 1 gets both items in the first and second round, and
agent 2 gets both items in the remaining two rounds. It is
easy to verify that such an allocation sequence is per-round
PO. However, it is not PO overall. Indeed, this gives utilities
18 for agent 1 and 24 for agent 2. Instead, an allocation se-
quence where agent 1 always gets o1 and gets o2 once (thus,
agent 2 takes o2 thrice and no item in one round) yields util-
ities 21 to agent 1 and 27 to agent 2. Observe that we could
obtain a similar example where all items are chores by just
multiplying all utilities by −1. M

On the other hand, for envy-freeness and proportionality,
we get the following.

Proposition 3. For additive utilities, if π̄(k) is per-round
envy-free (resp. proportional), then it is envy-free (resp. pro-
portional) overall.

We can see that the converse does not necessarily hold.
Indeed, consider a two-agent, two-round scenario with one
objective good, where we give the good to one agent in the
first round, and to the other agent in the second round. This
is envy-free (resp. proportional) overall, but not per-round.

Finally, note that our overall results would also hold in
the framework of one-shot allocations with k clones of each
item. However, the latter model cannot capture the per-
round results. Thus, our model cannot be reduced to the stan-
dard fair division setting with cloned items.

3 The Case of n Agents
In this section, we study the possibility of finding fair and
efficient sequences of allocations for the general case of any
number of agents.

We start by looking at envy-freeness. First of all, observe
that, whenever k is a multiple of n, then we can always guar-
antee an EF allocation.
Proposition 4. If k ∈ nN, there exists a sequence π̄(k)

which satisfies envy-freeness overall.

Proof. Start from an arbitrary initial allocation. Then, let
each agent give their current bundle to the next agent in the
next allocation (agent n gives theirs to agent 1). As each

agent i receives each bundle exactly k/n times, allocation
π∪k is envy-free. Thus, π̄(k) is envy-free overall.

Note that this is not always possible if k is not a multiple
of n, irrespective of m.
Proposition 5. For every n > 2, every k ∈ N \ nN and
every m ∈ N, an allocation that is proportional overall is
not guaranteed to exist, even if the items are all goods or all
chores.

Intuitively, in a profile where every agent has utility 1
for every item, except for a desirable item o∗ for which all
agents have high utility k(n − 1)(m − 1) + 1, there must
be some agent i receiving o∗ less times than k/n (as k is not
divisible by n).

If we also require Pareto-optimality, we get the following.
Theorem 6. For all n > 2 and k ∈ N, there exist a set
of items I and a profile u such that no allocation is envy-
free and Pareto-optimal overall. The set I can be chosen to
contain only two objective chores.

Proof (sketch). First, observe that, by Propositions 1 and 5,
if k is not a multiple of n, we are done. Now let k be a
multiple of n. Consider a profile with a small chore s and a
big chore b, such that every agent i ∈ N has ui(s) = −1,
while un(b) = −k/n and uj(b) = −k for every j ∈ N \{n}.

One can show that in every overall EF sequence of allo-
cations, all agents must receive s and b the same amount of
times (namely k/n times). However, any such allocation al-
ways has a Pareto-improvement. Indeed, suppose that agent
1 gives one of her allocations of b to agent n and agent n
gives back to agent 1 all of her allocations of s. Then, agent 1
will be happier (she increased her utility by k− k/n), and all
other agents will be equally happy (for i ∈ {2, . . . , n − 1}
nothing changes, while n gains k/n but also loses k/n). How-
ever, agent 2, e.g., now envies agent 1.

In light of Theorem 6, envy-freeness seems too strong of a
requirement, even in the repeated setting. However, we can
at least always find a proportional and Pareto-optimal se-
quence of allocations.
Theorem 7. For every n > 2 and k ∈ nN, an allocation
sequence that is proportional and Pareto-optimal overall al-
ways exists, and can be computed in time O(nmk ·m).

Proof. Consider any proportional sequence of allocations
π̄(k) (which must exist, by Propositions 1 and 4). Clearly,
any Pareto-improvement over π̄(k) must also be propor-
tional. We get the following algorithm:

1. Initialize a variable r as π̄(k), as defined previously.
2. Iterate over all possible k-round allocations ρ̄(k), and do:
• if ρ̄(k) Pareto-dominates r, set r to ρ̄(k).

3. Return r.

This algorithm runs inO(nmk ·m). Indeed, every iteration
at Step 2 of the algorithm requires time O(m), as we just
need to sum up the utilities for the items received by each
agent to compare the total utilities of r and ρ̄(k). Further-
more, there are nmk possible allocations, as for any round
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j ∈ [k] and every object o ∈ I , we could assign object o in
round j to n different agents. It remains to be shown that the
algorithm is correct.

Let us call η̄(k) the allocation in r returned by the algo-
rithm. As argued above, η̄(k) must be proportional overall,
since it is either equal to π̄(k) or a Pareto-improvement of
it. Thus, suppose toward a contradiction that η̄(k) is not PO.
Then, there must be some Pareto-optimal ρ̄(k) dominating
η̄(k) that is encountered before η̄(k) in the iteration—since,
if it is encountered after, the variable r would be updated
to ρ̄(k). But since Pareto-dominance is transitive, we know
that ρ̄(k) Pareto-dominates all the allocations corresponding
to the values that the variable r took before being updated to
η̄(k), and hence r is updated to ρ̄(k) during iteration. How-
ever, this means that r cannot be updated to η̄(k), as ρ̄(k)
dominates it: a contradiction. This concludes the proof.

Note that the existence guarantee in Theorem 7 is tight
because of Proposition 5. Moreover, we can define an
integer linear program (ILP) to compute such a proportional
and PO allocation (Figure 1). Based on this, in the full ver-
sion (Igarashi et al. 2023), we present some fixed-parameter
tractability results.

maximize
∑
i∈N

∑
o∈I

ui(o) · xio

subject to: xio ∈ {0, . . . , k} for o ∈ I, i ∈ N∑
i∈N

xio = k for o ∈ I∑
o∈I

ui(o) · xio > k/n · ui(I) for i ∈ N

Figure 1: An ILP for finding a proportional and PO allo-
cation sequence for n agents. In this ILP, we maximize the
social welfare and thus guarantee PO. Variable xio indicates
how often agent i receives item o. If k /∈ nN, this ILP may
be unsatisfiable due to Proposition 5.

4 The Case of Two Agents
In this section, we consider the case of repeated fair di-
vision among two agents. Several authors have focused
on this special but important case (see, e.g., the papers
by Brams, Kilgour, and Klamler (2012), Brams, Kilgour,
and Klamler (2014), Kilgour and Vetschera (2018), Aziz
et al. (2022), Shoshan, Hazon, and Segal-Halevi (2023), and
the references therein). This captures some practically rel-
evant problems, for example, house chore division among
couples (Igarashi and Yokoyama 2023), or divorce settle-
ments (Brams and Taylor 1996).

A first intuitive idea for the repeated setting could be to
apply twice the Generalized Adjusted Winner algorithm in-
troduced by Aziz et al. (2022), as in the one-shot setting
it returns efficiently a PO and EF1 allocation of the goods

and chores, by alternating the roles of the winner and the
loser. However, this approach may fail (see the full ver-
sion (Igarashi et al. 2023)).

Despite this, we will show that, whenever the number of
rounds is even, we can still always find an allocation that is
PO and EF overall. However, we lose the guarantee of an
efficient computation. First, we need the following fact:

Proposition 8. If n = 2, for additive utilities, proportional-
ity implies envy-freeness.

Now, we can show the following.

Theorem 9. If n = 2 and k ∈ 2N, an allocation sequence
that is envy-free and Pareto-optimal overall always exists,
and can be computed in time O(m · (k + 1)m).

Proof. From the algorithm in the proof of Theorem 7 and
from Proposition 8 we get an envy-free and Pareto-optimal
allocation. Since n = 2, there are (k + 1)m possible allo-
cations (up to symmetry-breaking), as each agent receives
each of the m items either 0, 1, . . . , or k times. Thus, we
obtain a run time of O(m · (k + 1)m).

Theorem 9 provides strong overall fairness and efficiency
guarantees, but it does not ensure per-round fairness. Indeed,
an envy-free and PO allocation that is per-round EF1 may
not exist, even if all items are goods or chores.

Proposition 10. If n = 2 and k > 2, an allocation that is
per-round EF1, Pareto-optimal overall, and envy-free is not
guaranteed to exist, even when all items are goods or chores.

Proof (sketch). First, observe that the number of rounds k
needs to be even (Proposition 5). Next, consider the follow-
ing utility profile over two items, where u1(o1) = u2(o1) =
1, u1(o2) = 3 and u2(o2) = 2. One can show that, for
k > 2, in any per-round EF1 and overall EF allocation
sequence, both agents should receive each item k/2 times.
However, any such allocation is dominated by the sequence
where agent 1 gets only o1 exactly k/2 − 2 times, only o2
exactly k/2 + 1 times, and no items once.

Nevertheless, for two agents and two rounds, i.e., n =
k = 2, it is always possible to achieve PO and EF as well as
per-round EF1. Indeed, in this case, we can always transform
an allocation that is PO and EF overall (which is guaranteed
to exist for two agents) to an allocation that is per-round EF1
while preserving the PO and EF guarantees. A similar idea
(i.e., exchanging items among two agents while preserving
some initial property) was also used by Shoshan, Hazon, and
Segal-Halevi (2023).

Theorem 11. Suppose k = n = 2. Given an allocation
sequence that is Pareto-optimal and envy-free, an allocation
sequence which is Pareto-optimal, envy-free, and per-round
EF1 can be computed in polynomial time.

Proof (sketch). Consider an overall PO and EF allocation
sequence π̄(2) for two agents. Let I1 = π1

1 ∩ π2
1 (and sim-

ilarly for I2) be the items assigned to agent 1 (resp. 2) in
both rounds. Moreover, let O = I \ (I1 ∪ I2) be the items
that each agent receives once. Observe that, by PO, we can
assume that every subjective item o is always assigned to
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the agent i ∈ {1, 2} for whom ui(o) > uj(o) (where j is
the other agent). Furthermore, we can remove objective null
items from consideration. Hence, all items in O are objec-
tive goods or chores. Let O+ ⊆ O be the objective goods in
O, and let O− ⊆ O be the objective chores in O. Clearly,
O+ ∩O− = ∅.

Update the allocation π̄(2) such that π1
1 = I1 ∪O−, π1

2 =
I2 ∪O+, π2

1 = I1 ∪O+ and π2
2 = I2 ∪O−. We then refine

this sequence via the following procedure:

1. For each o in O, do the following:
(a) If π̄(2) is per-round EF1, break the loop.
(b) Else, transfer item o as follows: if o is an objective

chore, remove o from π1
1 and π2

2 , and add it to π1
2 and

π2
1 ; if o is an objective good, remove o from π1

2 and
π2
1 , and add it to π1

1 and π2
2 .

2. Return π̄(2).

π1

O− o

O+o′

π1
1 π1

2

π2

O+ o′

O−o

π2
1 π2

2

Figure 2: Exchanges of goods and chores between agents in
Step 1(b) of the algorithm.

In other words, we start by assigning all chores in O to
agent 1 in the first round (and to agent 2 in the second round),
and conversely for the goods. Then, we progressively move
the chores from agent 1 to agent 2 in the first round, and vice
versa in the second round, and conversely for the goods. We
stop when the overall allocation is per-round EF1. This runs
in polynomial time: it remains to show that it is correct.

First, observe that during the execution of the algorithm,
π̄(2) remains an allocation that is PO and EF overall, since
we never change the total amount of times an agent receives
an item w.r.t. the initial allocation. Thus, if the initial allo-
cation is per-round EF1, we are done. We assume in the fol-
lowing that the initial allocation is not per-round EF1, which
implies that at least one agent envies another in some round.

By overall EF, 2u1(I1) + u1(O) > 2u1(I2) + u1(O),
which implies u1(I1) > u1(I2). Similarly, we can show
u2(I2) > u2(I1). This implies u1(I1 ∪O+) > u1(I2 ∪O−)
and u2(I2 ∪ O+) > u2(I1 ∪ O−) since all items in O+ are
objective goods and all items in O− are objective chores.

Since u1(I1∪O+) > u1(I2∪O−), if the algorithm moves
all the objective chores inO− from agent 1 to agent 2 and all
the objective goods inO+ from agent 2 to agent 1 in the first
round, then agent 1 does not envy agent 2 with respect to
the first round. Moreover, her utility in the first round never
decreases, so that once agent 1 becomes envy-free in the first
round, she remains envy-free in the latter steps. Similarly,
if the algorithm moves all the objective chores in O− from
agent 2 to agent 1 and all the objective goods in O+ from
agent 1 to agent 2 in the second round, agent 2 does not

envy agent 1 with respect to the second round. In addition,
once agent 2 becomes envy-free with respect to the second
round, she remains envy-free in the latter steps.

Thus, there exists an item o such that after transferring o,
agent 1 does not envy agent 2 in the first round, and agent 2
does not envy agent 1 in the second round. Let o be the first
such item. By a case-analysis, one can show that at least one
of the two allocations (produced by the algorithm) obtained
before and after transferring o is per-round EF1. Thus, the
algorithm correctly finds a desired allocation.

Combining the above with Theorem 9, we obtain the fol-
lowing corollary.
Corollary 12. If k = n = 2, then an allocation which is
Pareto-optimal, envy-free, and per-round EF1 always exists.
Moreover, it can be computed in time O(m · 3m).

As we have seen in Proposition 10, we cannot guarantee
per-round EF1 together with PO and EF overall for a more
general number of rounds k ∈ 2N with k > 2. Neverthe-
less, these properties become compatible if we relax a per-
round fairness requirement to the following (weaker) version
of EF1, where the envy of i toward j can be eliminated by
either giving a good of j to i, or imposing a chore of i on j.
Definition 6 (Weak EF1). An allocation π is weak EF1 if
for all i, j ∈ N , either ui(πi) > ui(πj) or there is an item
o ∈ πi ∪ πj such that ui(πi ∪ {o}) > ui(πj \ {o}) or
ui(πi \ {o}) > ui(πj ∪ {o}).

Again, to prove the following theorem, we show that it
is always possible to transform an allocation that is PO and
EF overall to an allocation that is per-round weak EF1 while
preserving the PO and EF guarantees.
Theorem 13. Suppose n = 2. Given a k-round allocation
that is Pareto-optimal and envy-free, an allocation which is
Pareto-optimal, envy-free, and per-round weak EF1 can be
computed in polynomial time.
Corollary 14. If n = 2 and k ∈ 2N, then an allocation
which is Pareto-optimal, envy-free, and per-round weak EF1
always exists, and can be computed in timeO(m ·(k+1)m).

In order to obtain Corollary 14, it suffices to prove Theo-
rem 13, since we can apply Theorem 9 to get an allocation
sequence π̄(k) that is PO and envy-free overall when k ∈ 2N.

To do so, suppose that we are given a PO and EF k-round
allocation. Looking into each individual round, there may
be an allocation π` that is not fair. Similarly to the proof of
Theorem 11, we thus repeatedly transfer an item between
envious rounds and envy-free rounds while preserving the
property that the overall allocation π̄(k) is PO and EF over
the course of the algorithm. We can show that this process
terminates in polynomial time and eventually yields a per-
round weak EF1 allocation. A formal description of our al-
gorithm is presented in the full version (Igarashi et al. 2023).

Finally, we show that, if we do not require PO, an allo-
cation that is EF and per-round EF1 can always be found
(when k is even) in polynomial time.
Theorem 15. If n = 2 and k ∈ 2N, then an allocation
which is envy-free overall and per-round EF1 always exists,
and can be computed in polynomial time.
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We do not know whether EF and per-round EF1 can be si-
multaneously achieved for n > 2 agents and k ∈ nN rounds
(EF overall is possible in this case by Proposition 4). We
leave it as an interesting open problem for future work.

5 Variable Number of Rounds
In the previous sections, we have assumed that k (the num-
ber of rounds) is predetermined. In this section, we study the
case when k can be variable.

We have seen that, whenever k is fixed, overall EF and PO
become incompatible in general (Theorem 6). This raises the
question of whether this is possible if k is not predetermined.
More precisely, we ask the following: given a utility profile,
is there a number k of rounds for which there is a sequence
of allocations π̄(k) that satisfies desirable overall and per-
round guarantees? We answer this question affirmatively.

Theorem 16. If for all i ∈ N and o ∈ I we have ui(o) ∈ Q,
then there exists k ∈ N and a π̄(k) such that π̄(k) is envy-free,
Pareto-optimal, and per-round PROP[1,1].

Recall that PROP[1,1] and PROP1 coincide for the case
of non-negative value items and for the case of non-positive
value items; thus, in such cases, the above theorem holds
with a per-round guarantee of PROP1.

To show Theorem 16, we establish a connection between
our setting and the divisible (Bogomolnaia et al. 2017) and
probabilistic settings (Aziz et al. 2023; Budish et al. 2013).
More precisely, we utilize a proof technique similar to that
of Aziz et al. (2023), who used a decomposition lemma by
Budish et al. (2013) for divisible item allocations to con-
struct a randomized allocation that satisfies desirable effi-
ciency and fairness notions when all items are goods. We
prove that there exists a randomized allocation satisfying
similar desirable guarantees for the mixed case of goods and
chores and translate it into our repeated setting.

Before we proceed, we provide some preliminary defini-
tions. Consider a set of n agents N = [n] and of items I . A
randomized allocation is a set of ordered pairs (pt, πt)t∈[h],
such that for every t ∈ [h], πt is an allocation implemented
with probability pt ∈ [0, 1], where

∑
t∈[h] pt = 1; the al-

locations π1, π2, . . . , πh are referred to as the support of a
randomized allocation.

Given a randomized allocation (pt, πt)t∈[h] with pt ∈ Q
for each t ∈ [h], we define its repeated translation as fol-
lows. Since all pt are rational numbers, there exists a k ∈ N
such that, for all t ∈ [h], pt = `t/k (for some `t ∈ N). In
other words, all fractions defined by (pt)t∈[h] are expressed
in terms of the same denominator, k. The repeated transla-
tion of (pt, πt)t∈[h] is the allocation sequence π̄(k) of form:

π̄(k) = (π1, . . . , π1︸ ︷︷ ︸
`1 times

, π2, . . . , π2︸ ︷︷ ︸
`2 times

, . . . , πh, . . . , πh︸ ︷︷ ︸
`h times

).

In other words, for each t ∈ [h], πt appears exactly `t times
(where pt = `t/k). We can now prove the theorem.

Proof (sketch) of Theorem 16. A fractional allocation is a
vector x = (x1, . . . ,xn) where each xi = (xi,o)o∈I ∈ Qm

+

and, for all o ∈ I ,
∑

i∈N xi,o = 1. Given a utility vec-
tor u, the utility of agent i for allocation x is defined as
ui(xi) =

∑
o∈I xi,oui(o). The notions of envy-freeness and

Pareto-optimality (w.r.t. all other fractional allocations) nat-
urally translate to this setting. Next, a randomized allocation
(pt, πt)t∈[h] is said to implement a fractional allocation x if

xi,o =
h∑

t=1

pt1[o ∈ πt
i ] for each i ∈ N and o ∈ I.

Here, 1[o ∈ πt
i ] is an indicator function which takes value 1

if o ∈ πh
i , and 0 otherwise.

When all agents’ utilities are rational-valued, a PO and EF
fractional allocation always exists (Bogomolnaia et al. 2017;
Chaudhury et al. 2022). Moreover, using the decomposition
lemma of Budish et al. (2013), we can show that any PO and
EF fractional allocation x admits a randomized allocation
(pt, πt)t∈[h] that implements x with these properties:

1. p1, p2, . . . , ph ∈ Q+,
2. πt

i ⊆ {o ∈ I | xi,o > 0} for each i ∈ N and t ∈ [h], and
3. πt is PROP[1,1] for each t ∈ [h].

See the full version (Igarashi et al. 2023) for details.
Finally, one can show that the repeated translation of

(pt, πt)t∈[h] is PO and EF overall. Moreover, since πt is
PROP[1,1] for all t ∈ [h], this translation is per-round
PROP[1,1].

Note that due to Theorem 6, we know that this result is
impossible for a fixed number of rounds, and thus highlights
the difference between fixed and variable k.

6 Conclusion
We have seen that in our model of repeated allocations
the (necessary) trade-off between fairness and efficiency is
much more favorable than in the standard setting without
repetitions. In the case of two agents, we presented some
algorithms guaranteeing overall envy-freeness and Pareto-
optimality (as well as per-round approximate envy-freeness)
for any even number of rounds.

As some of our algorithms require exponential time, it
would be of interest to study the computational complex-
ity of related decision problems, investigating whether and
where polynomial-time results are obtainable.

Our n-agent algorithm yields slightly weaker guarantees
(proportionality and Pareto-optimality), which are still an
improvement over the one-shot setting. It remains for future
work to determine whether this result can be strengthened
by additional per-round guarantees, as for the 2-agent case.

When the number of rounds k can be chosen freely, we
have shown that (for any number of agents) an envy-free,
Pareto-optimal and per-round PROP[1,1] allocation always
exists. We have done so by establishing a connection be-
tween our setting and the probabilistic and divisible settings.
However, our approach gives no guarantee on the number of
rounds it requires. As future work, it would be interesting
to investigate the complexity of finding the smallest k for
which an envy-free and Pareto-optimal allocation exists.
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